Projects per year
Abstract
In this paper, the Euler–Maruyama (EM) method with random variable stepsize is studied to reproduce the almost sure stability of the true solutions of stochastic differential equations. Since the choice of the time step is based on the current state of the solution, the time variable is proved to be a stopping time. Then the semimartingale convergence theory is employed to obtain the almost sure stability of the random variable stepsize EM solution. To our best knowledge, this is the first paper to apply the random variable stepsize (with clear proof of the stopping time) to the analysis of the almost sure stability of the EM method.
Original language | English |
---|---|
Pages (from-to) | 1-20 |
Number of pages | 20 |
Journal | Numerical Algorithms |
Early online date | 9 Jun 2016 |
DOIs | |
Publication status | E-pub ahead of print - 9 Jun 2016 |
Keywords
- stopping time
- almost sure stability
- Euler-Maruyama
- variable stepsize
- semi-martingale convergence theory
-
Numerical Analysis of Stochastic Differential Equations: New Challenges
1/10/15 → 30/09/17
Project: Research Fellowship