Evaluation of the effects and interactions of initial chlorine and sulphur contents on the release of potassium compounds during biomass combustion

Wenhan Cao, Jun Li, Xiaolei Zhang

Research output: Contribution to journalArticlepeer-review


In biomass combustion, understanding the effects of chlorine and sulphur release on the release of potassium compounds can help improve and predict the potassium release mechanisms. In this work, a kinetic model is applied to investigate the influences of S and Cl contents on the release of major potassium compounds during combustion. The results indicated that increasing the initial Cl from 3.8 × 10−5 mol/g biomass to 1.5 × 10−4 mol/g biomass promotes the maximum release of HCl and KCl by 518% and 273%, respectively, while inhibits the maximum release of KOH and K2SO4 by 99% and 68%, respectively. Cl in the biomass has directly influence the release of HCl, but indirectly impact the release of KCl; while its existence inhibits the formations of KOH and K2SO4 by adapting the contents of moisture, KO and KSO3. Raising the initial S from 2.7 × 10−5 mol/g biomass to 1.1 × 10−4 mol/g biomass only significantly affects the release of KOH and K2SO4 when temperature exceeds 1300 K, the maximum release of K2SO4 increased by 117%, while the release of KOH shifts from raise to decline. During combustion, S affects the formation and evaporation of K2SO4 by controlling the formations of intermediate S species. The results showed the model can accurately predict the major potassium compounds in various scenarios, and support the improvement of ash control technologies.
Original languageEnglish
Pages (from-to)178-186
Number of pages9
JournalJournal of the Energy Institute
Early online date22 Jan 2022
Publication statusPublished - 30 Apr 2022


  • Biomass combustion
  • Potassium compounds
  • Sulphur and chlorine
  • Kinetic model

Cite this