TY - JOUR
T1 - High absorption coefficient cyclopentadithiophene donor-free dyes for liquid and solid-state dye-sensitized solar cells
AU - Hu, Yue
AU - Abate, Antonio
AU - Cao, Yiming
AU - Ivaturi, Aruna
AU - Zakeeruddin, Shaik Mohammed
AU - Grätzel, Michael
AU - Robertson, Neil
N1 - This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.jpcc.6b03610.
PY - 2016/7/21
Y1 - 2016/7/21
N2 - We report a series of "donor-free" dyes featuring moieties of oligo(4,4-dihexyl-4H-cyclopenta[1,2-b:5,4-b′]dithiophene) (CPDT) functionalized with cyanoacrylic end groups for mesoscopic titania solar cells based on I-/I3 - or Co(II)/Co(III) redox couple and spiro-OMeTAD hole transporter. These were compared with similar cells using an oligo(3-hexylthiophene) dye (5T), which we reported before. Extending the CPDT moiety of the dye molecules from one to three (denoted as CPDT-1, CPDT-2, and CPDT-3) widens the photoresponse overlap with the solar spectrum, increases the molar absorption coefficient up to 75-000 M-1 cm-1, and improves the short-circuit current (JSC), open-circuit voltage (VOC), and power conversion efficiency (PCE) for all types of DSSCs. Among these sensitizers, CPDT-3 shows the highest PCE of 6.7%, 7.3%, and 3.9% with I-/I3 -, Co(II)/Co(III) redox couple, and spiro-OMeTAD hole transporter, respectively, compared with 7.6%, 9.0%, and 4.0% for 5T. Benefiting from the high absorption of CPDT-3, we demonstrate 900 nm thick mesoporous TiO2 film with remarkable JSC of 10.9 mA cm-2 in solid-state DSCs.
AB - We report a series of "donor-free" dyes featuring moieties of oligo(4,4-dihexyl-4H-cyclopenta[1,2-b:5,4-b′]dithiophene) (CPDT) functionalized with cyanoacrylic end groups for mesoscopic titania solar cells based on I-/I3 - or Co(II)/Co(III) redox couple and spiro-OMeTAD hole transporter. These were compared with similar cells using an oligo(3-hexylthiophene) dye (5T), which we reported before. Extending the CPDT moiety of the dye molecules from one to three (denoted as CPDT-1, CPDT-2, and CPDT-3) widens the photoresponse overlap with the solar spectrum, increases the molar absorption coefficient up to 75-000 M-1 cm-1, and improves the short-circuit current (JSC), open-circuit voltage (VOC), and power conversion efficiency (PCE) for all types of DSSCs. Among these sensitizers, CPDT-3 shows the highest PCE of 6.7%, 7.3%, and 3.9% with I-/I3 -, Co(II)/Co(III) redox couple, and spiro-OMeTAD hole transporter, respectively, compared with 7.6%, 9.0%, and 4.0% for 5T. Benefiting from the high absorption of CPDT-3, we demonstrate 900 nm thick mesoporous TiO2 film with remarkable JSC of 10.9 mA cm-2 in solid-state DSCs.
UR - http://www.scopus.com/inward/record.url?scp=84979502275&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcc.6b03610
DO - 10.1021/acs.jpcc.6b03610
M3 - Article
AN - SCOPUS:84979502275
VL - 120
SP - 15027
EP - 15034
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
SN - 1932-7447
IS - 28
ER -