TY - JOUR
T1 - Importance of the completeness of the configuration interaction and close coupling expansions in R-matrix calculations for highly-charged ions
T2 - electron-impact excitation of Fe20+
AU - Fernandez Menchero, L
AU - Giunta, A S
AU - Del Zanna, G
AU - Badnell, N R
PY - 2016/4/5
Y1 - 2016/4/5
N2 - We have carried-out two intermediate coupling frame transformation (ICFT) R-matrix calculations for the electron-impact excitation of C-like Fe20+, both of which use the same expansions for their configuration interaction (CI) and close-coupling (CC) representations. The first expansion arises from the configurations 2s2 2p2, 2s 2p3, 2p4, {2s2 2p, 2s 2p2, 2p3} nl, with n = 3, 4, for l = 0−3, which give rise to 564 CI/CC levels. The second adds configurations 2s2 2p 5l, for l = 0 − 2, which give rise to 590 CI/CC levels in total. Comparison of oscillator strengths and effective collision strengths from these two calculations demonstrates the lack of convergence in data for n = 4 from the smaller one. Comparison of results for the 564 CI/CC level calculation with an earlier ICFT R-matrix calculation which used the exact same CI expansion but truncated the CC expansion to only 200 levels demonstrates the lack of convergence of the earlier data, particularly for n = 3 levels. Also, we find that the results of our 590 CC R-matrix calculation are significantly and systematically larger than those of an earlier comparable Distorted Wave-plus-resonances calculation. Thus, it is important still to take note of the (lack of) convergence in both atomic structural and collisional data, even in such a highly-charged ion as Fe20+, and to treat resonances non- perturbatively. This is of particular importance for Fe ions given their importance in the spectroscopic diagnostic modelling of astrophysical plasmas.
AB - We have carried-out two intermediate coupling frame transformation (ICFT) R-matrix calculations for the electron-impact excitation of C-like Fe20+, both of which use the same expansions for their configuration interaction (CI) and close-coupling (CC) representations. The first expansion arises from the configurations 2s2 2p2, 2s 2p3, 2p4, {2s2 2p, 2s 2p2, 2p3} nl, with n = 3, 4, for l = 0−3, which give rise to 564 CI/CC levels. The second adds configurations 2s2 2p 5l, for l = 0 − 2, which give rise to 590 CI/CC levels in total. Comparison of oscillator strengths and effective collision strengths from these two calculations demonstrates the lack of convergence in data for n = 4 from the smaller one. Comparison of results for the 564 CI/CC level calculation with an earlier ICFT R-matrix calculation which used the exact same CI expansion but truncated the CC expansion to only 200 levels demonstrates the lack of convergence of the earlier data, particularly for n = 3 levels. Also, we find that the results of our 590 CC R-matrix calculation are significantly and systematically larger than those of an earlier comparable Distorted Wave-plus-resonances calculation. Thus, it is important still to take note of the (lack of) convergence in both atomic structural and collisional data, even in such a highly-charged ion as Fe20+, and to treat resonances non- perturbatively. This is of particular importance for Fe ions given their importance in the spectroscopic diagnostic modelling of astrophysical plasmas.
KW - R matrix calculations
KW - highly charged ions
KW - Fe20+
UR - http://iopscience.iop.org/journal/0953-4075
U2 - 10.1088/0953-4075/49/8/085203
DO - 10.1088/0953-4075/49/8/085203
M3 - Article
JO - Journal of Physics B: Atomic, Molecular and Optical Physics
JF - Journal of Physics B: Atomic, Molecular and Optical Physics
SN - 0953-4075
M1 - 085203
ER -