Laser accelerated ions in ICF research prospects and experiments

M. Roth, E. Brambrink, P. Audebert, M. Basko, A. Blazevic, R. Clarke, J. Cobble, T.E. Cowan, J. Fernandez, J. Fuchs, M. Hegelich, Kenneth Ledingham, L.G. Logan, D. Neely, H. Ruhl, M. Schollmeier

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)


The acceleration of ions by ultra-intense lasers has attracted great attention due to the unique properties and the unmatched intensities of the ion beams. In the early days the prospects for applications were already studied, and first experiments have identified some of the areas where laser accelerated ions can contribute to the ongoing inertial confinement fusion (ICF) research. In addition to the idea of laser driven proton fast ignition (PFI) and its use as a novel diagnostic tool for radiography the strong dependence on the electron transport in the target was found to be helpful in investigating the energy transport by electrons in fast ignitor scenarios. More recently an additional idea has been presented to use laser accelerated ion beams as the next generation ion sources, and taking advantage of the luminosity of the beams, to develop a test bed for heavy ion beam driven inertial confinement fusion physics. We review our recent experiments and simulations relevant to ICF research presenting a possible scenario for PFI as well as the prospects for next generation ion sources.
Original languageEnglish
Pages (from-to)B841-B850
Number of pages10
JournalPlasma Physics and Controlled Fusion
Issue number12B
Publication statusPublished - 1 Dec 2005


  • accelerated heavy-ion beams
  • laser-plasma acceleration
  • plasma production
  • ultra-intense lasers

Cite this