Molecular Theories of Solvation: Applications to Biomolecular Thermodynamics

David Palmer, Maxim Fedorov

Research output: Contribution to conferencePoster


Solvation plays a fundamental role in determining biomolecular thermodynamics. The integral equation theory (IET) of molecular liquids is a powerful method for the description of structural and thermodynamical parameters of molecules in solutions. Although IET has been an active topic of academic research for many years, in its common form the theory does not permit accurate calculations of solvation thermodynamics across multiple classes of molecules, which has prevented it from being widely used in many practical applications. We have developed a free energy functional (3D RISM/UC), which allows hydration free energies to be calculated accurately within the scope of IET. The model is easily implemented using existing computational software, which makes it immediately suitable for use in a wide range of industrial and academic applications. Applications of the 3D RISM/UC free energy functional for calculating host-guest binding free energies and the intrinsic aqueous solubility of crystalline organic molecules will be presented.
Original languageEnglish
Publication statusUnpublished - 26 Nov 2012
EventBiomolecular Thermodynamics Conference - Institute of Physicists - London, United Kingdom
Duration: 26 Nov 201227 Nov 2012


ConferenceBiomolecular Thermodynamics Conference - Institute of Physicists
Country/TerritoryUnited Kingdom


  • RISM
  • solvation
  • biomolecular
  • thermodynamics
  • chemistry
  • phyics
  • protein
  • interaction

Cite this