TY - JOUR
T1 - Patterning behavior of gravitationally modulated supercritical Marangoni flow in liquid layers
AU - Lappa, Marcello
PY - 2016/5/12
Y1 - 2016/5/12
N2 - The objective of the present analysis is the investigation of hybrid convection induced by the joint influence of imposed vibrations (g-jitters) of desired amplitude and frequency and surface-tension-induced forces in a nonisothermal liquid layer. This study may be regarded as the natural extension of an earlier work [V. M. Shevtsova, I. Nepomnyashchy, and J. C. Legros, Phys. Rev. E 67, 066308 (2003)10.1103/PhysRevE.67.066308], where the focus was on convection driven by interacting thermocapillarity and steady gravity. As in that work, conditions are considered for which the unperturbed (vibrationless) Marangoni flow would be characterized by the emergence and propagation of a classical hydrothermal wave, namely, a supercritical thermofluidynamic disturbance propagating continuously in the upstream direction. A number of numerical results are analyzed and discussed. Regimes of quasistationary rolls, standing waves, traveling waves, and modulated (pulsotraveling) disturbances are identified in the considered space of parameters. Most interestingly, it is observed that traveling waves can reverse their direction of propagation in some specific regions of the phase space.
AB - The objective of the present analysis is the investigation of hybrid convection induced by the joint influence of imposed vibrations (g-jitters) of desired amplitude and frequency and surface-tension-induced forces in a nonisothermal liquid layer. This study may be regarded as the natural extension of an earlier work [V. M. Shevtsova, I. Nepomnyashchy, and J. C. Legros, Phys. Rev. E 67, 066308 (2003)10.1103/PhysRevE.67.066308], where the focus was on convection driven by interacting thermocapillarity and steady gravity. As in that work, conditions are considered for which the unperturbed (vibrationless) Marangoni flow would be characterized by the emergence and propagation of a classical hydrothermal wave, namely, a supercritical thermofluidynamic disturbance propagating continuously in the upstream direction. A number of numerical results are analyzed and discussed. Regimes of quasistationary rolls, standing waves, traveling waves, and modulated (pulsotraveling) disturbances are identified in the considered space of parameters. Most interestingly, it is observed that traveling waves can reverse their direction of propagation in some specific regions of the phase space.
KW - Marangoni flow
KW - liquid layers
KW - hydrothermal waves
UR - http://www.scopus.com/inward/record.url?scp=84971281237&partnerID=8YFLogxK
UR - http://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.053107
U2 - 10.1103/PhysRevE.93.053107
DO - 10.1103/PhysRevE.93.053107
M3 - Article
AN - SCOPUS:84971281237
VL - 93
JO - Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
JF - Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
SN - 1539-3755
IS - 5
M1 - 053107
ER -