A novel framework for enhancing marine dual fuel engines environmental and safety performance via digital twins

Student thesis: Doctoral Thesis

Abstract

The Internet of Things (IoT) advent and digitalisation has enabled the effective application of the digital twins (DT) in various industries, including shipping, with expected benefits on the systems safety, efficiency and environmental footprint. The present research study establishes a novel framework that aims to optimise the marine DF engines performance-emissions trade-offs and enhance their safety, whilst delineating the involved interactions and their effect on the performance and safety. The framework employs a DT, which integrates a thermodynamic engine model along with control function and safety systems modelling. The DT was developed in GT-ISEĀ© environment. Both the gas and diesel operating modes are investigated under steady state and transient conditions. The engine layout is modified to include Exhaust Gas Recirculation (EGR) and Air Bypass (ABP) systems for ensuring compliance with 'Tier III' emissions requirements. The optimal DF engine settings as well as the EGR/ABP systems settings for optimal engine efficiency and reduced emissions are identified in both gas and diesel modes, by employing a combination of optimisation techniques including multi-objective genetic algorithms (MOGA) and Design of Experiments (DoE) parametric runs. This study addresses safety by developing an intelligent engine monitoring and advanced faults/failure diagnostics systems, which evaluates the sensors measurements uncertainty. A Failure Mode Effects and Analysis (FMEA) is employed to identify the engine safety critical components, which are used to specify operating scenarios for detailed investigation with the developed DT. The integrated DT is further expanded, by establishing a Faulty Operation Simulator (FOS) to simulate the FMEA scenarios and assess the engine safety implications. Furthermore, an Engine Diagnostics System (EDS) is developed, which offers intelligent engine monitoring, advanced diagnostics and profound corrective actions. This is accomplished by developing and employing a Data-Driven (DD) model based on Neural Networks (NN), along with logic controls, all incorporated in the EDS. Lastly, the manufacturer's and proposed engine control systems are combined to form an innovative Unified Digital System (UDS), which is also included in the DT. The analysis of marine (DF) engines with the use of an innovative DT, as presented herein, is paving the way towards smart shipping.
Date of Award3 Jun 2020
Original languageEnglish
Awarding Institution
  • University Of Strathclyde
SponsorsUniversity of Strathclyde
SupervisorGerasimos Theotokatos (Supervisor) & Dracos Vassalos (Supervisor)

Cite this

'