Large step down voltage converters for desalination

  • Richard Pollock

Student thesis: Doctoral Thesis


One percent of the world's drinking water is currently desalinated, and this will have to increase to 14% by 2025. Desalination is energy intensive, having significant commercial and ecological implications. One of the most promising methods of desalination is capacitive deionisation which only uses 1kWh/m3 but requires a voltage of less than 1.8V at currents of up to 1000A This thesis produced hardware capable of creating 550A at a voltage of 1.8V, giving over a 1kW power rating, with an input voltage of 340V dc. The converter designed was a bidirectional asymmetrical half-bridge flyback converter allowing for isolation at these high step down ratios. The converter was used to charge a bank of 17,000F supercapacitors from 0V to 1.8V, with an initial charging step down ratio in excess of 340:1 falling to 190:1 as the load charged. A novel Asymmetrical Half-Bridge Coupled-Inductor Buck converter is presented as the ideal solution for large step-down ratios with analysis comparing the ability to efficiently step down a voltage with other common converters, the buck and flyback converters. A comparison between a single-ended coupled-inductor buck converter employing a buck-boost voltage clamp and the novel asymmetrical half-bridge coupled-inductor buck converter circuit shows that the asymmetrical half-bridge converter is a more efficient circuit as leakage energy is recovered; the switch voltages are clamped to within the dc voltage rating of the bridge and the control strategy is simple. Passive and active snubbers are reviewed for efficiency, switch ratings and management of the effects of leakage inductance and compared against the novel designs presented. In the desalination application isolation is required so the flyback circuit is used. An isolated three switch bidirectional converter is constructed using silicon carbide MOSFETs and diodes switching at 40kHz. The converter uses novel current measuring techniques, an on-board microprocessor and closed loop control designed into the final DC-DC converter.
Date of Award31 Oct 2019
Original languageEnglish
Awarding Institution
  • University Of Strathclyde
SponsorsUniversity of Strathclyde
SupervisorNeville McNeill (Supervisor) & Barry Williams (Supervisor)

Cite this