The distance-based critical node detection problem : models and algorithms

Student thesis: Doctoral Thesis


In the wake of terrorism and natural disasters, assessing networked systems for vulnerability to failures that arise from these events is essential to maintaining the operations of the systems. This is very crucial given the heavy dependence of daily social and economic activities on networked systems such as transport, telecommunication and energy networks as well as the interdependence of these networks. In this thesis, we explore methods to assess the vulnerability of networked systems to element failures which employ connectivity as the performance measure for vulnerability. The associated optimisation problem termed the critical node (edge) detection problem seeks to identify a subset of nodes (edges) of a network whose deletion (failure) optimises a network connectivity objective. Traditional connectivity measures employed in most studies of the critical node detection problem overlook internal cohesiveness of networks and the extent of connectivity in the network. This limits the effectiveness of the developed methods in uncovering vulnerability with regards to network connectivity. Our work therefore focuses on distance-based connectivity which is a fairly new class of connectivity introduced for studying the critical node detection problem to overcome the limitations of traditional connectivity measures. In Chapter 1, we provide an introduction outlining the motivations and the methods related to our study. In Chapter 2, we review the literature on the critical node detection problem as well as its application areas and related problems. Following this, we formally introduce the distance-based critical node detection problem in Chapter 3 where we propose new integer programming models for the case of hop-based distances and an efficient algorithm for the separation problems associated with the models. We also propose two families of valid inequalities. In Chapter 4, we consider the distance-based critical node detection problem using a heuristic approach in which we propose a centrality-based heuristic that employs a backbone crossover and a centrality-based neighbourhood search. In Chapter 5, we present generalisations of the methods proposed in Chapter 3 to edge-weighted graphs. We also introduce the edge-deletion version of the problem which we term the distance based critical edge detection problem. Throughout Chapters 3, 4 and 5, we provide computational experiments. Finally, in Chapter 6 we present conclusions as well future research directions. Keywords: Network Vulnerability, Critical Node Detection Problem, Distance-based Connectivity, Integer Programming, Lazy Constraints, Branch-and-cut, Heuristics.
Date of Award19 Oct 2021
Original languageEnglish
Awarding Institution
  • University Of Strathclyde
SponsorsUniversity of Strathclyde
SupervisorKerem Akartunali (Supervisor) & Ashwin Arulselvan (Supervisor)

Cite this